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FOREWORD

A technique is described for preserving in cost estimates
more of the information available to the engineers and cost
analysts participating in the process of estimating. The added
information, principally in the form of a frequency distribution
for system costs, should prove useful to the persons faced
with the problem of using the cost estimate in the decision-
making process,

An actual test of the technique, made with a major com-
ponent of the Main Battle Tank 70, will be documented in a sub-
sequent publication.

Amold Proschan
Head, Economics and Costing Department
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ABSTRACT

An important aspect of cost research is the measurement of the un-
certainty inherent in the projection of system cost. Approaches to this
problem have in the past focused on the decisionmaker’s intuition oron sen-
sitivity analysis. Only recently have approaches utilizing such tools as
statistical decision theory and probability theory been formulated.

This study focuses on the Monte Carlo simulation approach to uncer-
tainty in cost analysis. This approach requires (a) expression of input
estimates as probability distributions reflecting uncertainty and (b) cost
equations pertinent to a particular model.

The Monte Carlo simulation approach then generates (aj the fre-
quency distribution for system cost and (b) statistical measures that {llus-
trate the nature and magnitude of system cost uncertainty,

Two models are developed, the Beta model and the Weibull maodel,
each of which reflects a particular distribution form for the inputs. The
relative costs and advantages of each model are compared.

A user’s guide to the program and complete program listings are

presented in App A,
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INTRODUCTION

The purpose of this paper is to describe a technique for quantifying un-
certainty in cost analysis. Approaches to the measurement of the uncertainty
present in cost models have in the past generally centered on the intuition of
the decision maker or, at best, on sensitivity analysis. Only recently have ap-
proaches based on statistical decision theory and probability theory been at-
tempted.

The technique of uncertainty analysis is defined for purposes of this paper
as the use of probability distributions as inputs to aggregate models. This
analysis can be used in several ways. For example, it can be valuable where
there is a major lack of information concerning the value of input parameters.
This can be true of systems not yet in existence or of estimates of historical
parameters for which data are fragmentary. It can also be of value in esti-
mating the cost of an existing system for which actual data are available.
Samples of these data can be used to construct distributions for input variables.

The model developed is called the “Monte Carlo Uncertainty Analysis
Model.” It is to be used with any cost model. The model allows the user to
specify probability distributions for the cost model input variables rather than
the usual single-point estimates. These are then input to the cost model in the
uncertainty analysis model, and the outputs are probability distributions and
confidence intervals rather than single-point estimates of costs, There are
two variations of the modei, differing as to types of probability distributions
that can be used to characterize inputs. One assumes a Beta distribution and
the other a Weibull, The availability of two types of distribution permits the
uger more flexibility in specification. The rationale for use of one or the other
approach rests in which type of distribution the analyst feels most closely ap-
proximates the distribution of the input variables of the particular problem and
which set of input specifications he can most easily and accurately provide.

The first chapter of the paper discusses the value of uncertainty analysis
models in general and describes the basic methodology of techniques developed.
The second chapter discusses actual use of the techniques in several simpli-
fied examples,

The apnendix provides the user with the information necessary to effec-
tively implement the programs. The precise format of user-provided inputs
is described. Error messages are incorporated into the program to ensure
conformity with input requirements. A description of program logic is fol-
lowed by a complete listing of the Weibull and Beta programs.
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Chapter 1

COST-UNCERTAINTY ANALYSIS: AN OVERVIEW

COST UNCERTAINTY IN DECISION MAKING

The process of decision making and thus the fundamental task of the de-
cision maker is to choose among alternative courses of action. Often such
choice will involve a cost-benefit analysis of either a formal or an informal
nature. Within the context of a formal analysis, what has been given the deci~
sion maker as costs may now be examined.

The precise calculation of costs is not a difficult task. The availability
of computers and cost models can reduce this to routine. The calculation it-
gelf is precise and can be done rapidly in minute detail,

The inputs to these precise calculations are, however, not precise; in
fact they are often quite the opposite. The errors present in each input are
passed on to various aggregations until a total cost is arrived at that somehow
reflects each individual error. Thus, cost data inputs are combined in a com-
puter model with a multiplicity of equations and hundreds of other inputs to
form a single estimate of total costs. This single estimate is presented to the
decision maker with the implication that, aithough it may not be perfect, it is
certainly the best available estimate and without any statement as to likelihood
of occurrence or range of other pogsible values.

But in the generation of this aggregate number, hundreds of imprecise
numbers may have been used. This fact is not emphasized to the decision
maker nor does he have a basis on which to judge the precision of the numbers.
Cost models as currently conceived and used, then, uniformly withhold from
the decision maker some information that might be vital to his decision. He
has been denied some available information on the accuracy of the estimates.

As an example, suppose that one of the elements to be costed is a missile
airframe. The missile is not yet designed or built, so no production-cost data
are available. A cost-estimating relation (CER) could be used, for example,
to estimate that the airframe cost for a new missile would be about $32,000.
The design group, however, warns that some added sophistication might make
the CER predict on the low side, but the improvements in some manufacturing
techniques promise lower costs. Some quick calculations show estimates as
low as $26,000 and as high as $45,000. Each of these calculations is based on

a set of agsumptions concerning labor and overhead rates, material costs in
the future, and design details not yet firm and subject to some uncertainty.
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For each of a multitude of other important inputs, similar assumptions
are made, and a single aggregate cost is obtained as the output of the cost
model. The hypothetical decision maker is then forced to make his final de-
cision on a single value derived from several imprecise input values. If he
can be provided with some additional knowledge concerning the impact of the
uncertain variable, a more rational decision can be made,

The dangers of the single-cost estimate have been recognized for years,
and several strategies have been developed for augmenting the analysis or
circumventing the difficulty. One is isolation of the differences between alter-
natives. Cost elements common to alternatives are estimated in a similar or
identical manner so that only the uncertainties of the unique feature of alter-
natives affect relative cost. Another is the use of sensitivity analysis. In
sensitivity analysis the impact of errors in estimates and assumptions is com-
puted, and error sources important to the choice of alternatives are identified.
Such an analysis can produce proof in insensitivity, or it can provide evidence
that, within a relevant range of values, choice is or is not affected by estima-
tion error.

When judgments about the relevant range of all variables in a model are
considered, sensitivity analysis produces an array of numbers that includes
the analysts’ beliefs concerning the limits of the variables but excludes any
knowledge of their relative probability. No probability statements are fur-
nished, and the decision maker could be led to believe that all numbers in the
array are equally likely.

The choice of a relevant range of values for sensitivity analysis is both
difficult and critical to its usefulness, It also reveals a dilemma inherent in
the application of sensitivity analysis. If the analyst has evidence that the
value of one of the inputs is constrained within some upper and lower limits,
then this same evidence may provide information on the relative likelihood of
particular values. In some cases an intuitive belief about the range may pro-
vide him with equally valid suppositions concerning probabilities of the values
within the range.

In the previous example of the missile cost, if the reasoning that fixed
the relevant range of costs at $26,000 to $45,000 could yield information on
the probability of occurrence, the missing information could be supplied in a
form useful to the decision. A possible statement might be that there is a 99
percent probability that the cost is less than $42,000.

When all uncertain elements of a given cost model are combined, sensi-
tivity analysis may, for example, produce a maximum cost of $810 million
even though there is only one chanre in a hundred that cnsts will exceed $700
million. In the sensitivity analyses, if the $800 million number exceeded
slightly the cost of another alternative under similar sengitivity assumptions,
the decision maker may have been furnished an unlikely cost set for considera-
tion along with all other sensitivity sets, and this set may uniquely favor a
different alternative. Knowing just a few simple probabhility statements, then,
can make unnecessary the time-consuming consideration of cost estimates
whose likelihood is very remote.

In short, although sensitivity analysis is a powerful tool for portraying
the results of estimating error, it may lead to considering highly unlikely
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situations. The same reasoning that leads to a determination of relevant
range for sensitivity analysis has the potential of providing key information
in decision making.

Value of Probability Information

The use of probability distributions as inputs to aggregate models has
recently captured the attention of the cost analysts., The two most widely nsed
techniques for handling subjective probability information are the derivation
of moments’ and the Monte Carlo simulation. This paper focuses on the Monte
Carlo simulation approach and relies heavlly on the works of David B. Hertz,
Paul F. Dienemann,® and W. D. Lamb.*

A discussion of the Monte Carlo m lology is preceded by several ex-
amples designed to illustrate the potential value of probability distribution in-
formation to the decision maker. In each illustration the frequency distribu-
tions for two alternatives are shown. The horizontal axis in each case repre-
genis ti:e cost of the alternative and is increasing to the right. The vertical
axis represents the likelihood of occurrence at each cost level. Each of these
is a hypothetical case in which equal effectiveness or other benefits are as-
sumed. The decision maker’s problem is that of choosing the least-cost
alternative, If only single-point cost estimates were provided the decision
maker would of course feel constrained to select the lower cost in each case.
However, Fig. 1 demonstrates how information provided by probability estima-
tion could modify his outlook.

The peak of each curve is at the monst likely, or modal, value and that is,
in these hypothetical cases, the only cost total that would be furnished a deci-
sion maker in the ahsence of uncertainty analysis. In the¢ example in Fig. 1
B is expected to be less expensive but it has a much larger variance, so that
extremely high costs are more likely than with A, Faced with thig dilemma,
the decision maker may decide to avoid extreme costs by choosing A or to
gamble on the expected lower costs of B, The decision cannot be prescribed
for him, but probability distributions can give him awareness of a pitfall in
selecting the “less expensive” alternative.

Figure 2 illustrates a clear-cut case. The largest possible cost of one
alternative is less than the smallest possible cost of the other. Decision
makers furnished with this information are not likely to choose differently
than if only point estimates were given.

In Fig. 3 a single-point estimate would furnish no basis for choice. With
most likely values essentially the same the decision maker must look else-
where for « ifferences. If the probability distributions are furnished, however,
it is apparent that the costs cannot be regarded as equal. If they appear as
shown here it is presumed that A would be chosen, since it can be better ac-
commodated in the budgeting and financial management system. It is possible
that much-lower-than-mean costs may have some value too, and as a result
it becomes impossible to speculate on choice outside specific cases. The im-
portant thing is that information helpful in the decision process has been fur-
nished that would not otherwise be available.

The costs associated with two alternatives may or may not be signifi-
cantly different. Figure 4 illustrates two cost totals, each with the same
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Fig. 1—Alternctive Comparison, Case 1

Most fikely value A > most likely value B
varionce A < variance B

! A

Fig. 2—Alternative Comparison, Case 2

Most likely value A < most likely value B
No overlap of distributions

Fig. 3—Alternative Comparison, Case 3

Most likely value A = most likely value B
Variance A < varionce B

Fig. 4—Alternative Comparison, Case 4

. Most likely value A < most likely value B
Variance ‘A = variance B; most likely value A < most likely value B
Variance A’ variance B’; varionce A< variance A
Variance B < variance B
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variance. If variance is low A’ and B’, the situation is as in Case 2; costs are
different and offer a basis for choice as conclusive as the magnitude of the
difference might indicate. Larger variances, A and B, diminish the importance
of the most-likely-value cost difference. At some combination of “closeness”
and high variance the cost difference may not be of significance in the selection
of an alternative. In any case, quantification of the probabilities of the differ-
ences is a useful contribution to the decision maker’s understanding.

These four examples, it should be noted, differ only quantitatively. They
are offered in these forms to illustrate the range of possibilities in which useful

information may come from a knowledge of the probability distributions of
total cost.

METHODOLOGY

Thia sectinn presents the basic methodology of two variations of the Monte
Carlo model. One assumes that uncertain inputs can be characterized by Beta
distributions. The other variation uses the Weibull distribution.

Overview of Logic

Since the two variations of the Monte Carlo technique are identical as to
logic and statistical methods, the general logic of both models can be discussed
together. Basically the models counsist of a Monte Carlo simulation, a listing
of the simulation results by class intervals, and a plot of the output distribu-
tions. In the simulation the value of each input parameter is, chosen randomly,
based on the probability distribution of the parameter. When this procedure
ig repeated many times, a range of values is produced. These values are aggre-
gated into a number of class intervals and results are plotted. Finally, since
the results of the simulation produce a very crude piot, a smoothing routine
produces a more regular version of the output distribution.

Beta Variant

This approach is quite similar to one formulated by P. Dienemann of The
RAND Corporation.® It assumes that cost distributions can be approximated
by Beta distributions. These are unimodal and continuous finite at both upper
and lower bounds and can be skewed or symmetric.*>* This section discusses
(a) required inputs, (b) general logic of each technique, and (c) outputs.

Inputs. To specify the Beta distribution for.an input variable the following
input parameters are required:

(1) XP (the most probable value of the distribution); If one views the
probability distribution of an X, Y plane, the most prob..ic value corresponds
to the point having the greatest Y value. For example, the points P and P, are
the most probable values for the distributions shown in Fig. 5. In the figure
the abscissa describes the values that the input variable may assume and the

*A more comprehensive discussion of this type of distribution can be found in

" Mood and Graybill,® p 129,
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ordinate gives the likelihood of occurrence of each of those values. In the
symmetric distribution (curve A of Fig. 5) the most probable, or modal, value
as it is generally known also corresponds to the expected or mean value.*

(2) XH (high value): This is the point to the right of the modal value
where the probability distribution meets the abscissa given the X values in-
crease from left to right. In Fig. 5 the points H and H, are the high values.

FREQUENCY OF
OCCURRENCE

Fig. 5~Typical Beta Distributions

Skewed |eft Symmetric Skewed right

High

variance 0

Medium

varionce '
1

Low

variance
]

Fig. 6—~Sample Set of Distributions

(3) XL (low value): This is the point to the left of the modal value where
the probability distribution meets the abscissa given the X values increase
from left to right. In Fig. b the points L. and L, are the low values. In Fig. 5
they are the zero point of a standard X, Y coordinate.

(4) Distribution Type: Finally the usér must compare his concept of the
probabhility distribution of the input variable with a set of standard distributions
and choose the one that most closely approximates his concept. The set of
distributions now being used is shown in Fig. 6, These distributions can be
described qualitatively on the basis of (a) being symmetric or skewed or (b)
having different degrees of variances. This is illustrated in Fig. 6. Most un-

*For a strict definition of this see Mood and Graybill,’ p 103,
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certain inputs should be approximated reasonably by one of the nine distribu-
tion types.

(5) The Cost Model: The user must provide the costing equations that
compose his cost model. These are embedded within the uncertainty analysis
model and are necessary to compute the values from which the final plot of the
distributions is to be made. To illustrate with an extremely simple example,
suppose one were interested in calculating the probability distribution of per-
sonnel and maintenance costs for an aircraft battalion. Further, suppose per-
sonnel costs were available on a per capita basis and maintenance on a per
aircraft basis, then the cost model submitted by the user might look like this:

F1 = number of men x dollars per man

F2 = npumber of aircraft x maintenance cost per aircraft

Total cost = F1 + F2

The five types of input described above must be prepared for each input
variable in the cost model. The neceasary model inputs having been discussed,
the general logic of the model may now be considered.

For vorious
levels of

aggregation
For each cost input

By

XPZ, XH2, XLZ' Typez

-
[ ]
Monte SuHlicient Compilation
. Cost N
Carleo > | - of —p of
R f mode! , :
simulotion] iterations? results

N
e . ;
2] | AN

Fig. 7—Monte Carlo Technique, Beta Voriont

Logic and Qutput. Figure 7 illustrates the basic methodology of the model.
For each of the uncertain costs inputs, the four required parameters are pro-
vided by the user. Using this information, the model randomly selects a single
value for each input. This particular set of values is then input to the cost model
that is now embedded in the uncertainty model. This produces & particular set
of output values that are stored for use later in building the final distribution
curves. The process is repeated 1000 times, which should be a sufficient
namber of iterations to develop an accurate total cost distribution. The number
of iterations can be changed easiiy to meet user requirements. If the specified
number of iterations has not been run, the model will recycle to again (a) ran-
domly select different values for each input, (b) compute output values for these
gelected inputs using the embedded cost equations, and (c) store these results
for further use. ’

When the gpecified number of iterations has been run, the model moves
to a new phase. This involves compilation of the results of e ch run to (a)
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prepare frequency distributions for aggregate cost and (b) compute statistical
measures such as mean and variance. First, the values are ordered into class
intervals covering the range of possible values. The frequency diagram pro-
duced by this ordering is then smocthed to produce the more familiar form of
probability distribution illustrated in Fig. 7. The next chapter contains a more
detailed description of the actual form of output generated by the model.

Weibull Variant

In this approach inputs are characterized by a Weibull distribution.*»%’
Weibull distributions, like Beta distributions, are unimodal continuous and can
be symmetric or skewed but, unlike Beta distributions, are infinite at both
upper and lower bounds. Since the Weibull variant approach is identical in
logic and output to the Beta variant just described, only the input requirements
of the Weibull variant will be discussed in detail.

For various
fevels of

For each cost input aggregation

=

XPy, XH), PHy, XLy, PLy

XPy, XH,, PH,, XL,, PL,

Sufficien
number of
iterations’

Yes | Compilation
of
resvits

Monte
]
1 Corle P P> Cost
. . model
simulation | o

4 [ )

5

XPy, XHy, PHy, XLy, PLy

Fig. 8—Monte Carlo Technique, Weibull Variant

Inputs. Figure 8 illustrates the methodology of the Weibull variant. As
illustrated in the figure the input requirements for each cost input are:

(1) XP (most probable value): This has the same meaning as the most
probable value input for the Beta variant. The discussion is identical and
therefore will not be repeated at this point.

(2) XH and PH: Since these inputs are interrelated, both can be dis-
cussed in one section. XH is a value of the input that is higher, i.e., greater
than, the most probable value specified for the input. " PH is the probability
that the value of that input will be some quantity greater than XH. Figure 9
illustrates this graphically. The X axis is the value of the input variable and
the Y axis is the probability of occurrence of different X values. Upon closer
inspection, it is clear that this input specifica.tion is analogous to the specifica-
tion of XH for the Beta variant. In the case of the Beta variant the user was
asked to specify XH such that the probability of the input being greater than

*A complete mathematical description of the Weibull distribution can be found in
Refs 6 and 7.
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XH was zero. Thus PH is zero. Since the Weibull distribution is infinite and i

thus has no fixed bound the user is asked to specify XH and PH in such a way ;.

that the probability of the value being greater than XH is PH. i 1
(3) XL and PL: These are analogous to XH and PH where XL is some : :

value leas than XP such that the probability of the input variable being less

than XL is PL. ) 3
Logic and Qutputs. With these inputs the Weibull variant operates in

essentially the same fashion as the Beta variant. Values are randomly se-

lected for each of the cost inputs, and these are processed through the cost

model with results being stored for development of the final distributions.

After the specified number of iterations is completed the model orders the

results of each iteration and develops frequency distributions, which are

smoothed and then finally graphed. _ !
Model Limitations. The techniques developed in this paper provide many .

advantages over more conventional forms of cost analysis. Uncertainty about

: input variables can be explicitly described. The simultaneous interaction of

uncertainties in many variables can be assessed and then graphically displayed :
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P Fig. 9—Weibull Distribution : |

to those confronted by decision. The sensitivity of final results to each or a
set of inputs can be efficiently tested. However, it would be at best naive o . ]
claim there are no disadvantages to use of these techniques. Some major con- 3
; siderations are:

! {a) The assumption of Beta or Weibull distribution may not be a sound one,

(b) Much additional input information is necessary to operate the model,

{c) The model assumes independence of the input variables. This can

b prove limiting in certain situations. There are at present several approaches

to handling dependency. Among these are incorporation in the model of the

functional relation between the variables, statement of the dependent variable

in terms of auxillary variables, and use of joint probability distributions.

Though these can eliminate dependence in a majority of costing problems, the ]

systematic handling of input dependency remains a very open area for research. g b
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Chapter 2

IMPLEMENTATION OF MONTE CARLO MODELS

A thorough understanding of the input requirements and output interpreta-
tion of uncertainty analysis models is necessary before atiempting to apply the
models to specific problems. The user of the models should be aware of model
limitations, sources of input, output interpretation, and the differences between
the Beta and Weibull models in order to implement the models effectively. A
discussion of computer time requirements for the models is presented to ac-
quaint the potential user with the anticipated costs of applying the program to
a given problem. Format of inputs, computer program logic, and complete
program listings are presented in the appendix.

SOURCES OF INPUT INFORMATION

The Beta and Weibull simulation models are designed to handle any type

‘of cost function. Information concerning uncertain variables may come from z

variety of sources. The user of the model must be prepared to obtain the pre-
cise input information required by the model from these diverse sources.

In many cases the best source of information about an uncertain input is
a person or agency familiar with the variable in question and possible sources
of variation. For example, a certain cost model may require the cost of a
newly designed equipment item as an input. An engineer who is working on
the design of the equipment and who is acquainted with the possibilities of pro-
duction delays and future design modifications may be the best source for nec-
essary inputs, The input is still an estimate, but by minds more intimately
informed on the details of a specific variable.

Another example is a cost model that requires manpower level as an in-
put. The best source of information may be an experienced military advisor
who is familiar with manpower requirements under varying circumstances.

In both cases, the expert providing the informatior may be unfamiliar with
slatistics and the precise meaning of model input requirements such as finite
upper and lower limits or assignment of probabilities.

It 18 necessary for the user to precigely define the variable that must be
estimated and to carefully delineate the information needed from such expert
sources of information. An excellent example of techniques for cbtaining pro-
gram inputs from such sources is presented in “A Technique for Probability
Assignment in Decision Analysis” by W. D. Lamb.*
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Information concerning uncertain inputs i8 frequently derived from sta-
tistical techniques such as regression and correlation analysis. Examples are
(a) cost-estimating relations that express the cost of equipment or material as
a function of design or performance characteristics, (b) overhaul rates for
military vehicles, and (c) the ratio of draftees to total accessions to the armed
services. Information obtained from regression models can be readily trans-
lated into the form required by the uncertainty analysis models. Whether the
best information source is an engineering expert, a regression model, or any
combination of sources, the information can be expressed in the form required
for an input in the uncertainty model.

MODEL INPUT REQUIREMENTS

The Beta Model

The necessary inputs for the Beta model are:

{1) XP: 'The most likely value of the variable

(2) XH: A finite upper limit

(3) XL: A finite lower limit

(4) Distribation type*

The first three inputs must be obtained from the best available source;
the fourth can be derived from the first three by the user. The most readily
available input should be XP, the most likely value of the variable. Obtaining
finite upper and lower limits presents a more serious problem.

In many cases the expert source of information will hesitate to provide
a finite upper limit for an uncertain variable, for to do so would be to imply
that the value of the variable cannot possibly exceed this limit. Consider the
case of the engineer estimating the cost of an advanced-design engine at an
early stage in its development. The remote possibility of a major change in
end-item design characteristics or an ingoluble technical problem could drive
the cost up considemably. These possibilities may preclude determination of
a finite upper limit or require an extremely high upper limit to account for any
feasible situation. Similar problems could be encountered by the military ana-
lyst who is predicting troop strength in some future time period. The prob-
ability, though very small, of an armed conflict requiring massive troop build-
up or of a technological breakthrough that will repiace existing manpower re-
quirements dramatically must be considered in establishing the limits of the
distributioh.

The finite nature of the Beta distribution implies that the value of the un-
certain variable must remain within the range described by the upper and
lower limits with 100 percent certainty. The distribution of an uncertain var-
iable obtained through regression analysis with normal error terms has in-
finite range. The model user can, however, use a 89 percent confidence in-
terval as a reasonable proxy for certainty.

Once the most likely, high, and low values are determined, the model user
can derive the distribution type. If the difference between the upper limit and

*Distribution types characterized by direction of skewness and relative variance
are presented Ia Fig, 8.
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the most likely value {(XH - XP) equals the difference between the most likely
vaiue anu the lower limit (XP - XL}, the distribution is symmetric. If (XP - XL)
is greater than (XH - XP), the distribution is skewed to the left. If (XH - XP)
is greater than (XP - XL), the distribution is skewed to the right. Once the
direction of skewness is determined, the user can ask the expert source to
choose from the three figures representing the relative variance of distribu-
tions in the category. If the information is obtained from a regression model,
the symmetric medium variance curve is the most appropriate since it approx-
imates the transformation of a normal curve to a Beta distribution.

The Weibull Model

Weibull input requirements are:

(1) XP. The most likely value

(2) XH: The upper limit

(3) PH: Probability that the value of the input will exceed XH

(4) XL: The lower limit

(5) PL: Probability that the value of the input will be less than XL

Values for XP, XL, and XH are obtained as in the preceding model. The
major difference is that XL and XH are not finite limits. Some of the problems
assoclated with the Beta model are thus eliminated. The expert source may be
more willing and able to present bounds with a probability value attached to
them. When uncertain inputs are obtained by means of regression analysis
with error terms normally distributed, the Weibull input requirements are
easily and accurately met.* Since the variable has a known normal distribu-
tion, XP is the predicted value of the variable and PH and PL are chosen by
the user to determine XI, and XH. If the user chose 5 percent as values for
both PH and PL, a 90 percent confidence interval about the predicted value
would yield XL and XH.

OUTPUT FORMAT

The outputs of the Beta and Weibull Monte Carlo programs are identical
in format. Both routines produce two plots of the total cost distribution and a
table of frequencies within class intervals.

The first plot produced by the program shown in Fig. 10 is that of the
total cost distribution as produced by the Weibull Monte Carlo simulation.
The Y axis, running horizontally across the top of the computer output page,
measures the number of total cost estimates lying within a given class inter-
val, The X axis, running vertically along the left-hand side of the computer
output page, measures total cost. The “Xs” that form the distribution show
how many times total cost fell within each interval, Four other values, XMIN,
XMEAN, XMAX, and STD DEV, are printed. Theg< represent the minimum
total cost, the mean fotal cost, the maximum ftotal cost, and the standard devia-
tion of the total cost distribution. In Fig. 10, for example, th- minimum cost
is $98,422, the mean cost is $116,111, the maximum cost i3 $131,859, and the
standard deviation is $5697.

*4The Weibull density function is nearly symmetric (approximating the normal dis-
tribution) when its shape parameter is approximately 3.5.” See Lamb 4 p 15.
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The second plot, Fig. 11, is a smoothed version of the first. The cost
data generated by the Monte Carlo simulation are smoothed by fitting them to
a polynomial by the method of “least squares.”* The frequencics are rounded
to the nearest integer.

The table of frequencies produced by the program and shown in Fig. 12
has four columns of information. The leftmost column contains the midpeint
of each of the 100 class intervals. Column 2 contains the number of total cost
estimates, produced by the Monte Carlo simulation routine, that lie within
each cost interval, The third column contains the Y value produced by the
smoothing routine for each class interval. This value is rounded to the near-
est integer. The fourth column is the difference between the second and third
columns. In Fig, 12, for example, the highest class interval has a midpoint of
$131,692, a frequency of 2.0, a smoothed frequency of 2.4291, and the differ-
ence between the two frequencies is 0.4291,

CCMPUTER TIME REQUIREMENTS

The purpose of this section is to provide the user with computer time re-
quirements as a measure of cosi to enable him to evaluate these programs in
terms of cost effectiveness.

For the Beta and the Weibull programs two narameters were varied in
order to determine the sensitivity of computer time consumption. These
parameters are the number of iterations in the Monte Carlo simulation and
the number of variables. It was considered a priori that these two parameters
would explain most of the time variations from run to run.

The number of iterations was set at 500 and 1000 for the purposes of ex-
verimentation. The number of cost variables was changed from 3 to 15. Along
with the change in the number of variables there was a change in the complex-
ity of the algebraic operations. These two cost models are shown in Fig. 13,

Timing results for the Beta and Weibull programs are shown in Table 1.
Total time results include execution time, compiler time, system time, and
load time. Since execution time varies with the number of iterations and the
compiler, load, and system times are roughly fixed, it is also useful to see
the execution times alone since they are roughly analogous to recurring costs,

A number of points should be noted in interpreting Table 1, First, the
times shown are for an IBM 7044. If the programs are used on a different
computer the times will vary. Second, the total times are quite small, never
exceeding 5 min. Third, for the most part execution time is less than 50 per-
cent of total time. Finally, the execution time will not vary greatly with the '
number of variables since the major difference is the number-of data cards
that must be read by the computer.

From this information it seems probable that the vast majority of cost
models will require less than 10 min of computer time.

*The method of least squares chooses the coefficient of the fitted polynomial so
that the sum of the squared deviations between the polynomial and real data is mini-
mized.
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TABLE |
Computer Time Requirements
Total time,? min Execution time
Program
ve.3b v=15 | v=3 | v-15
Beta
I¢ =500 2.64 3.07 0.64 0.87
I =1000 3.17 3.30 0.74 1.21
Keibull
I =500 2.39 2.67 0.25 0.44
1 =1000 2.49 2.92 0.35 0.69

3Total time includes compiler time, system time, load time,
and execution time. All times are measured on an [BM 7044 com-

puter.
V = number of cost variables.
1 = number of iterations.

CONCLUSION

The Monte Carlo simulation models provide a tool for expressing uncer-

e g

tainty in item cost estimates and deriving a corresponding expression of un~
certainty in total costs. The user must, however, be aware of the potential, .
the costs, and the limitations of the models before applying them to solve a

particular problem.
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WEIBULL INPUT REQUIREMENTS

The user of the Weibull model must provide four types of inpui:
(1) Cost model specifications
(2) The number of cost inputs
(3) An arbitrary 6-digit integer
(4) Cost data

Tnese four types of input will be considered in turn.

Tr.e user must supply the cost model to the first computer program
(Wr1BT¥) in the position shown in Fig. Al. This cost model is subject to
several restrictions. First, it must be specified in FORTRAN IV.” Second, the
totz! cost must be called output (IHIST). Third, the cost variables must be
called FDATA(I) where 1 is any integral value from 1 up to the number of cost
inputs that the user specifies, .

An example of a user-specified cost model is shown in Fig. A2.

The second and third types of input must be provided on a punched card
immediately following the first program, WEIBTP. The format of that card is:

Columns 2 to 4: An integer signifying the number of cost inputs. This
number may take any integral value from 1 to 100

Columns 5 to 10: An arbitrary 6-digit number used to generate uniform
random numbers

Columns 11 to 80: Blank

The final type of input provided by the user is the cost data. For each
cost input the user must provide the most likely value, a low value and the prob-
ability that the actual value will be lower, and a high value and the probability
that the actual value will be lower. Each value and probability is written on
a puich card with the following type of format:

+X.YYE+ZZ

where +X.YY raised to the power +ZZ is the value or probability. For example,
~2700 would be written as ~2.70E+03. The card format fcr each cost input is:

Columns Z to 10: Low value

Cclumns 12 to 20: High value

Columns 22 to 30: Most likely value

Columns 32 to 40: Probability that actual value will be higher than the
high value

Columns 42 to 50: Probability that actual value will be lower than the
low value

Each cost data card is placed in a sequence such that its position in the
stack of cost data cards is equal to the subscript of the cost input variable it
represents. Thua the card containing FDATA(5) would be the fifth in the stack
of cost data cards and that containing FDATA(15) would be fifteenth.
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To further elucidate the input requirements the following example is
given. At a very high level of aggregation the total recurring costs of an
infantry division can be thought of as the sum of operating costs, replacement
costs, and pay.

For a planned infantry division the most likely annual operating cost
might be $1.0 million, but there is a 10 percent chance that operating costs
might be higher than $2.0 million or lower than $0.8 million. Similarly, annual
replacement costs most likely would be $0.5 million with a 10 percent chance
of being lower than $0.4 milliorn or higher than $0.8 million. Annual pay most
likely would be $0.5 million and would have a 25 percent chance of being $0.4
million and a 20 percent chance of being $0.6 million.

The user-supplied cost model is shown in the equation

OUTPUT(IHIST)=FDATA(1)+FDATA(2)+FDATA(3)

OUTPUT(IHIST) is total recurring cost, FDATA(1) is assumed to be operating
cost, FDATA(2) is replacement cost, and FDATA(3) is military pay.

Next the user must supply a data card containing the number of cost
inputs and a 6-digit random number. An example of such a card is shown in
Fig. A3.

The 3 in col 4 signifies that there are three cost inputs (operating costs,
replacement costs, and military pay). The number 987654 is an arbitrary
integer used to generate random numbers,

Finally, the user must supply the input cost information. Since FDATA(1)
refers to operating costs, the first input cost data card deals with operating
cost., Fig. A4 shows the required input cost data card.

Note that the low, high, and most probable values are written in the
form:

The input cost data cards for replacement costs and pay are simiiarly
prepared. The user-provided data (excluding the cost model) for this example
are shown in Fig. AS.

To place the inputs in proper perspective to the rest of the computer -
program, Fig. A6 shows the program deck configuration. The user-provided

inputs are indicated by arrows and the 7044 control cards are noted by
asterigks,

BETA INPUT REQUIREMENTS

The Beta model, like its Weibull counterpart, requires four types of
input: ’
(1) Cost model specifications
{(2) The number of cost inputs s
(3) An arbitrary 6-digit integer
(4) Cost data
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Fig. AS5—User-Provided Data, Weibuli Program
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The first three types of input are identical to those required for the
Weibull model. The cost data requirements are similar but not identical.

The user must imbed within the first program deck (called BETATP)

a cost model. Figure A7 shows the position of the model within the program.

The cost model is subject to a number of restrictions. First, it must be
written in FORTRAN IV.” Second, the total cost must be called output (IHIST).
Third, the cost inputs must be called FDATA(I) where I is any integral value
from 1 up to the number of cost inputs that the user specifies.

An example of a user-specified cost model is shown in Fig. A8.

The second and third types of user-supplied inputs must be placed on
a punched card immediately following the third subroutine, EVLINT. The
format of that card is:

Columns 2 to 4: An integer signifying the number of cost inputs. This
number must be a positive integer no greater than 100.

Columns 5 to 10: An arbitrary 6-digit number used to generate
uniform random numbers.

Columns 11 to 80: Blank.

The final type of input to be furnished by the user is cost data.

For each cost input the user must provide the most likely value, a low
value, and a high value. Additionally, the user must choose a standard Beta
distribution that best matches his conception of how the probability distribution
would look. For each cost input the above cost data are written on a punched
card with the following type of expcnential notation:

+X.YYE+ZZ

which is equivalent to £XYY* ZZ_ For example, +34000 would be written as
+3.40E+04. The distribution type is not written using the above exponential
notation but is represented as an integer.

The punched card format for each cost input is:

Columns 34 to 42: Low value

Columns 44 to 52: High value

Columns 54 to 62: Most likely value

Column 63: Distribution type. This type is represented by an integer
with possible values ranging from 1 to 9. Figure A9 shows the type of dis-
“.ibution corresponding to each integer.

The cost input punched cards are placed immediately after the punched
card containing the number of cost inputs and the arbitrary integer.

Each cost input card is placed in a sequence corresponding to the sub-
script of the cost input variable it represents. For example, the cost input
card containing the costs associated with FDATA(5) would be fifth in the
stack of cost input cards.

To illustrate the user-supplied inputs assume, for example, that the
total recurring cost of an infantry division is the sum of operating cost,
replacement cost, and pay. The most likely annual operating cost of a planned
infantry division might be $1.0 million and the upper and lower limits are $2.0
million and $0.8 million respectively. Since it is more probable that operating
~ost, if not $1.0 million, will be higher and since operating cost is quite volatile,
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Fig. AB—User-Specified Cost Model, Example
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i . the cost analyst might choose distribution type 3. Similarly, the annual re-

5 ‘: placement cost most likely, low, and high values are $0.5 million, $C.4 million,
Lo : and $0.8 million. Like operating costs, replacement cost is quite volatile and

P if the most likely value is wrong it is probably too low. Therefore the cost !
P analyst might choose type 3 once again. Finally, the most likely, low, and high

v ! values for military pay are $0.5 million, $0.4 million, and $0,6 million. Military
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Fig. A9—Distribution Types
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pay does not change much znd the most likely estimate is equally likely to be
too high or too low. Thus the cost analyst might consider distribution type 8
to be the closest approximation to his concept of the military pay distribution.
: To run the above data in the Beta model, the user must first supply a

' ' cost model. The required cost model is

OUTPUT(HIST)=FDATA(L)+FDATA(2)+FDATA(3)

i OUTPUT(IHIST) is the total recurring cost, FDATA(1) is operating cost,
.l FDATA(2) is replacement cost, and FDATA(3) is military pay.
i ; Next a punched card containing the number of cost inputs and a 6-~digit
| random number must be supplied. Such a card is shown in Fig. A10.
' The 3 in col 4 of that figure specifies to the model that there are three
cost inputs (operating cost, replacement cost, and military pay). The number
123456 is an arbitrary number used to generate random numbers.

Finally, the user must supply the input cost information. FDATA(1)
refers to the first variable in the cost model. Examples of user-supplied
input cost data cards are shown in Fig. All.
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To place the inputs in proper perspective to the rest of the computer
program, Fig. A12 shows the program deck configuration. The user-provided

inputs are indicated by arrows and the 7044 control cards are noted by
asterisks.

ERROR MESSAGES

The error messages for the Weibull and the Beta programs are identical
except for one message dealing with input distribution types for the Beta pro-
gram. This section lists the error messages (data errors), explains the mean-
ing, and suggests methods for correcting the errors.

DATA ERROR—-MODE NOT BETWEEN HIGH AND LOW IN DATA SET XXX

Meaning: There is an error in cost data card XXX. The most probable
value for cost variable XXX is either equal to or higher than the high value
specified or equal to or less than the low value specified. All data are read
but no simulation is run and no output is produced.

Corrective action: Check to see that the data are punched, from left to
right, in the following order: low, high, and most likely. A second source of
error to check is the exponent of one or more of the three data items. Finally,
check to see that the data are punched in the correct columns.

DATA ERROR—-LOW GREATER THAN HIGH IN DATA SET XXX

Meaning: There is an error in cost data card XXX. The low value
specified on the card is greater than or equal to the high value. All data are
read but no simulation is run and no output is produced.

Corrective action: Same as for the previous error message.

DATA ERROR~-DISTRIBUTION TYPE FOR DATA SET XXX
IS ZERO OR NOT SPECIFIED

Meaning: This message is only generated by the Beta program. The
type parameter on cost data card XXX is either not specified or is specified
as zero. All data are read but no simulation is run and no output is produced.

Corrective action: Check cost data card for the missing parameter.
The parameter may be punched in the wrong column.

ERROR MESSAGE~RANGE OF TOTAL COST ESTIMATES IS LE38 THAN TEN
PLOT DELETED

Meaning: The simulated total cost est.mates have a range smaller
than 10.0. In this case the X axis cannot be designed and the plot is deleted.
Program execution continues.

Corrective action: The cost data cards may be altered by increasing
all the exponents.
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COMPUTER HARDWARE AND SOFTWARE REQUIREMENTS

This section examines the computer facilities required to run the
Monte Carlo programs. Since many of the requirements are themselves a
funcdon of the kind of computer used, the following discussion should be con-
sidered only a guideline.

Hardware

Four hardware features are required for the Monte Carlo programs.

First, there must be some method of reading punched cards since the
program and data inputs are on punched cards.

Second, there must be sufficient main (core) storage to contain the
program. No precise storage requirements can be formulated because of
variations among computers; however, it can be stated that the variable arrays
employed in the programs require 3000 words and the programs themselves
are at least as large. Ten thonsand words of storage ought to be sufficient.

Third, there must be some auwxiliary storage device to hold intermediate
results. This device might be a tape drive, a disk, or a drum. The capacity
of the storage device must exreed 2000 words.

Finally, there must be a printer to print the output. The printer must
have a capacity of at least 120 characters per line.

Software

The programs are written entirely in 7040/ 7044 FORTRAN IV, They do
not use either “Print” or “Punch” statements.

The programs are designed to run under the 7040/7044 operating sys-
tem. Use with any other computer will entail the user’s supplying a different
set of computer control cards.

PROGRAM 1.0GIC

The purpose of this section is to provide sufficient information about
the programs per se to allow them to be modified successfully. A verbal
description of the Weibull program and subprograms is supplied as well as a
description of how they are linked together.* Complete program listings and
flow charts are provided for both programs. The verbal description is keyed
to the program listing. References are made to specific lines of computer
coding. Knowledge of the flow charts, on the other hand, is not specifically
required to read the verbal description. However, the flow charts should
prove quite useful as a general guide to the programmer.

Weibull Program

There are three arrays used in the Weibull program (called WEIBTP).
The first, FDATA, is the array containing the values of the cost input data.
The subscript 100 sets the maximum number of cost inputs that may be used

*The Beta program is similar in format and employs identical output routines.
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in a cost model. If this number is to be increased then FDATA and the second
subscript of WYBARY, a second array used to simulate the FDATA, must be
altered in the dimension statement. The first subscript of WYBARY is fixed.
The third array, output, is dimensioned according to the number of iterations
of the simulations to be run. If the number of iterations is to be increased
then the subscript of output must be increased.

There are six internal program parameters that are set immediately
after the dimension statement. First, there are three parameters, 101, 102,
and 103, that set the device numbers for the system input device, the system
output device, and an intermediate storage device. The fourth parameter,
ITER, is set to the number of iterations of the simulation to be run. If ITER
is increased, then the subscript of the array output must be increased. (An
array in the plot routine must also be increased.) The fifth parameter,
NPAGES, refers to the number of pages each plot is to occupy. NI, the sixth
parameter, sets the number of class intervals to be used in constructing a
frequency distribution of the simulation output. If NI is changed, a number of
arrays in the plottirg routine (discussed below) must be increased also.

After all internal parameters are set, two external parameters are
read: NSETS, the highest subscript of FDATA actually used by the cost model,
and IRANDM, an arbitrary 6-digit integer used to generate random numbers.

After the above-read statement, the next block of coding (through
statement number 122) deals with reading the cost input data and defining the
Weibull distribution around each input. First, the cost data are read into the
computer. Then a check is made to see that the high cost is greater than the
low cost. If it is not, an error message is written and a flag is set in the
parameter ITER by setting ITER equal to 1. A second check is made to see
if the mode falls within the range of the high and low. If it does not, an error
message is written and ITER is set to 1. After the above checks are made
ITER is checked to see if ITER = 1. I it does, the rest of the data is read and
checked but no simulation takes piace. Data are written on device 103 signaling
that errors did occur and the run is stopped. I no error occurred, then initial
parameters for a Newton-Raphson iterative process for specifying the Weibull
distribution for a given input variable are specified. The iterative process is
contained in the coding starting at statement number 3100 and extending to
statement number 3110. The last four statements before statement number 722
transfer the three parameters specifying the Weibull distribution to WYBARY.
Then control returns to the second read statement and the process is repeated
until all the data are read and their Weibull distributions are specified.

The next block of coding, through statement number 9960, is the simula-
tion. Basically the coding consists of a double loop, the inner running from
statement number 9980 to statement numoer 121, and the outer from statement
number 9980 to 9960. The inner loop generates uniformly distributed random
numbers and then distributes them according to the Weibull distribution asso-
ciated with the input data. The process is repeated until all input data have
values. In the outer loop the cost model is evaluated on the basis of the values
for the input data. The above process is repeated ITER times, i.e., until there
are ITER values for the total cost output.

The next block of coding, to statement number 9961, writes the number
of iterations, the number of class inlervals, the number of pages for each plot,
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the number of data inputs, and the simulation results on intermediate storage
device 103. The storage device is backspread so as to be in position to be read
and the program terminates.

The final section of coding contains the error messages and format
statements.

Plot and Frequency Distribution Program

The plot and frequency distribution program (called HSTPLT) is
separate from the Weibull and Beta programs. In an effort to reduce core
storage requirements, HSTPLT is loaded on top of the preceding Weibull or
Beta programs with all preliminary results being saved on an intermediate
storage device.

The internal organization of HSTPLT includes a main program to plot
the results of the simulation and a subprogram to transform the simulation
data into a smooth curve. The program and subprogram are considered in
turn.

The program HSTPLT is conceptually divided into two parts. The first
part gets up the output histogram and calculates the mean and standard devia-
tion of the data. The second part plots the output data. In the first part there
are four arrays. NFREQ is dimensioned as large as NI, the number of class
intervals in the histogram. NFREQ is the frequency of output in each class
interval. XVAL is dimensioned the same as NFREQ and is the midpoint
value for each class interval. A third array, SMOOTH, contains the smoothed
frequencies corresponding to each value of XVAL and is also dimensioned the
same as NFREQ. The final array is output having a dimension of ITER, a
parameter that is set in the Weibull and Beta programs.

There are five internally set parameters. The first three, 101, 102,

and I03, are the numbers of the system input device, the system output device, .

and an intermediate storage device, respectively. The fourth parameter, KOR,
is the degree of the polynomial used to smooth the simulation output. The
final parameter, IHOPE, is set to zero initially. IHOPE counts the number of
times HSTPLT is executed. When IHOPE is 1, the program 1s cperating on
the unsmoothed data. When IHOPE is 2, the program is dealing with smoothed
data. In addition to the above parameters there is a data statement that estab-
lishes four graphic characters for the Y axis of the output plots.

After the internal parameters are set, the program reads internal
parameters saved on storage device 103. These parameters are described in
the section dealing with the Weibull and Beta program logic. If the parameter
ITER is equal to 1, then there was an input data error and execution is halted.
Otherwise the simulation output is read.

Statement number 445 begins the main loop of the program. IHOPE is
incremented to show the number of times that the loop is being executed. The
first block of coding, through statement number 81, is concerned with finding
the maximum and minimum values produced by the simulation. Immediately
following statement number 91 is a block of coding that calculates the length
for the plot and histogram class intervals. Statement 9C computes the mid-
point of each class interval. After statement number 90, through statement
number 92, the frequency or the number of observations falling within each
class interval is calculated. The method is basically to start from the lowest
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class interval and to test whether the upper limit of the class interval is
greater than or equal to the value of an observation. I so, the number of
observations within the class interval is increased by 1. Frequency calculation
occurs only during the first execution of the main program loop, since during
the second execution smoothed frequencies have been supplied by the smooth-
ing subroutine. The remainder of the coding for the first portion of HSTPLT,
through statement number 3200, consists of a straightforward calculation of

the arithmetic mean for all observations and of the standard deviation.

The plotting routine is a conceptually separate part of HSTPLT. How-
ever, technically it is only a continuation of the coding for HSTPLT. There
are three arrays. First, LABELX contains the labels used for the X axis of
the output plot. A dimension of 16 is given to LABELX, with LABELX(16) set
to a high value, although there are only 15 labels printed owing to an idio-
syncrasy in the coding that prints the X axis. LABELY contains the Y axis
labels and LINE contains the graphic characters used to generate the Y axis.

The first two lines of coding in the plotting routine determine the
number of printer lines per class interval. The number of lines is at least 1.
These two lines in conjunction with the value of NI control the number of
pages the output plot will fill. If NI is greater than 50, then the number of
pages is NI/ 50 (rounding upward to the next highest integer).

The next block of coding, through statement number 450, constructs the
scale for the X axis and fills the X axis labels with the proper values. The
fourth line of coding (the line preceding statement number 400) checks to see
if the range of the values for the simulation output is greater than 10. If it is
not, control is transferred to an error message routine. The coding starting
at statement number 400 and ending at statement number 420 constructs the
increments for the X axis labels. The coding from statement numbers 420 to
432 establishes the value of the first label and the remaining coding, through
statement 450, establishes the values for each label.

The next five lines of coding, through statement number 460, constructs
the Y axis increments (first two lines) and determines the Y axis label values
(1ast three lines). ]

The next section, through two lines past statement number 483, writes
the Y axis labels, the Y axis itself, and the minimum value of X.

The next block of coding, extending through statement number 499, prints
the X axis labels, the plot, and the mean value of X. The inner loop in this
coding (DO 499 J=1, INTWID) is essentially unused unlegs the number of class
intervals (NI) has been reset to a value less than 26. The plot logic will nct
be discussed in detail, However, the coding idiosyncrasy with respect to
LABELX (16) noted above will be explained. After the last label has been
printed, by statement number 471, the subscript of LABELX is increased to
16. If LABELX (16) is less than the minimum value of X, then the first “IF”
statement after statement number 475 will eventually cause statement number
471 to be executed one extra time.

After completing the plot the maximum value of X and the standard
deviation of X are written. If IHOPE is 2, i.e., if this is the second time
through the main program, execution is halted. If this is the first time, the
smoothing routine is called. On return from the smoothing routine, the
smoothed values are rounded to the nearest integer and control is transferred

to the beginning of HSTPLT.
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) The smoothing subroutine is SHARE subroutine FOLYFT and documen-
1 tation is available through the SHARE organization. In general, the subroutine

: fits a polynomial to the unsmoothed data using the leasi-squares criterion.

' The dimension of the arrays XVAL, NFREQ, and SMOOTH must equal

)

i NI, the number of class intervals. The dimension of C, SMYX, and AMEANX
¢ must equal KOR, the degree of the polynomiaPbeing used to smooth the data.
[ ». The dimension of A must be KOR squared and the dimension of SUMX must
P ¥ be two times KOR.
» A series of flow charts, Figs. A 13 to A19, follows, in which various
) routines of the Monte Cario simulation are portrayed.
-4
Read ake any
3 : required
3 inputs data checks
1 .
‘. | ;
H
(Generate 4
distribution 1
parameters ;
y i
: Generots f
4 .} rondom number,
4 select input
; data value !
g for each input , 3
i ] J Prepare 3
' Store histogram . H
: selected
. input
: valves y
N ] h
.
H Plot gseph, 1
. ¥ 0pri‘:w h i
| output {
: Enough Cost i
| iterations? model {
. t
! M
| ;
i |
| ;
| ;
z §
B &
2 H
]
k 3
Fig. A13—~General Flow Chart of Monte Carlo Routines
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store in cym
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application
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Fig. 14—Flow Chart of BETATP Cost Processing Routines
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Fig. A15—Flow Chart of Sample Routine
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Fig. A16é—Flow Claart of HISTu Routine
?:i:e:’l’::le — Design Design Print Plot data
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Fig. A17—Flow Chart of Pi~tting Routine
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Fig. A18—Flow Chart of POLYFT Routine
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!

i Assign

; array

: dimensions
'

3
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‘F of iterations,
; number of plot -]
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! é
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i raquired by output §
: cost model

L
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Cost model

sehaT ik i

¢ (AT
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b
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i i L
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] E store sample £
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| b 3
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: Fig. A19—Flow Chart of WEIBTP Rontine
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WEIBULL PROGRAM LISTING

$JoB

00943035 JOHNSON » WW s MONTE

SOPEN

SeSU10+REWIND

$1B8J0B MCCOST

SIBFTC WEIBTP NODECK

DIMENSION FDATA(100)+OUTPUT(1000)sWYBARY(3+100)

101=5

102=6

103=10

ITER=1000

NPAGES=2

NI=100D

T READT101,1037 NSETS,TRANDM

D0 122 JOT=1,NSETS

READ (101,104) VZ,V1sV0sPIsP2

IF (1V1I-VZ1+LTe0s) GO TO 95961

9563 IF (VO.LE,VZ2 <ORe VOGE.VI) GO 10 9962

- 9964 I1F (ITER LEQ. 1 ) GO TC 122

IF ((V0-V2)4LT«(V1=V0)) GO TO 1

EM1=4.0

EM223,5

GO 7O 2

EM1=3.0

EM2%3.5

P=l.~P1

PLN=-ALOG(P)

Al= (PLN#(EM1/(EM1-1e)) ) #%(1./EM])

EK1=(V1-VO#Al)/(1.=Al1)

BI==((EMI-1.)/EMI) *{TV2-EK1) /(VO~EK1 1) ##EM]

P2ASEXP(B])

F1=P2-P2A

A2=(PLN¥(EM2/{EM2~14)) ) %¥{1/EM2)

EX2=(V1-VD%A2)/(1.~A2)

B2=—((EM2-14) /EM2) #((V2-EK21/(VO-EK2Z2} ) ##EM2

IF (BZ¢GTA4(-89.5)) GO TO 105

P2B8=90.

GO TO 106

105

P2B=EXP(B2)

106

F2=P2-P28

IF(F2.LT+,0001) GO 7O 3110

EK1=£K2

P2A=P28

EMTEMP=EM2

EM2=EM2-F2# ( (EM2=-EM1)/(F2-F1})

EM1=EMTEMP

FisF2 -

GO 70O 310¢

3110

FLAMDA=(VO~EK2 ) #(EM2/(EM2~1¢) ) #%(],/EN2)

WYBARY{19+JOT)=FLAMDA

WYBARY(2+JOT)=EM2

WYBARY(3+JOT)=EK2

122

CONT INUE

1F (ITER LEQ. 1 ) GO TO 9960

PN e B g PSS ST A 1 A

THIST=]

DATA JK/1000437

9908

DO 12) IKE=]1,NSETS

L=1RANDM

177

L=78125%L

LeL=(L/JK})*JK

IF(L-100000) 888,888,777 T

888

RANDOM=FLOAT(L)/100000,
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AT Dt

—

=L
RANLOG=—AL OG {RANDOM)
121 FOATA{IKE;=WYBARY(1+IKE)#RANLOG**(1,/WYBARY{2,1KE) }+WYBARY{3,+]KE)

C
C__THE COST MODEL IS IRSERTED HERE
C
C # % % % #& # # ¥ % % # ® * % ® & £ = ¥ * % »
! ¢ ® @ H R R ® # 8 R R TEFTE TRTRE R RN R TR wTE w® %
; OUTPUT(THIST)=FDATAT1 ) +FDATA(2) +FDATA(3)+FDATA(G1+FDATA{5)1+FDATA
. #16)
3 C

IF (IHIST.GE.ITER) GO VO 9960
THISY = [HIST+1
GO _T0 9908
9960 CONTINUE
WRITE(103) ITERsNI sNPAGESINSETS
WRITE(I03) (OUTPUT(KI+sK=s1s1TER]
: — TBICKSPACE 10 .
} BACKSPACE 10
- CALL EXITY
9961 WRITE(102,100) JOT
100 FORMAT(55H DATA ERROR —- LOW GREATER THAN HIGH IN DATA SET NUMBER»y

L

*13)

o1 107 FORMAT(56H DATA ERROR == MODE NOT BETWEEN AIGH AND LOW TN DATA SET
, %el4) .
. TTER=1 §

- GO _T0 9963

9962 WRITE (1024+107) JOT
1TER=1 -

TGO T0 9964

"7103 FORMAT (14s16)
; 104 FORMAT (5F10.2)
s END B
i SENTRY WEIBTP
| 6431763

3 - 41630E+04 +2.00E+04 +1.54E+04 +0.01E+00 +0.01E+00
T +5.00E403 +6.00E+03 +5.45E+03 +0.0LE+00 +0,01E+00
. __+1,80E4064 +2,50E+04 +2,10E+04 +0+01E+00 +0.01E+00
: +1,00E+04 +1450E+04 +1,17E+04 +0401E+00 +0.01E+00
! 3 +1450E404 +2,00E+04 +1.76E+04 +0.01E4+00 +0.01E+0Q
: __+1400F8 704 +1.15E+404 +1,06E+04 +0+01E+00 +0.01E+00
$185Y5
SIBG8 COMPLT
SIBFTC HSTPLT NODECK
(4 EXTRACT OF HISTO ,
REQH »SMOOTH(100) »OUTPUT(1000) .
_INTEGER BLANK3sX+DOT»APOS ;
DATA BLANKsX»DOTsAPOS/1H »1HXslHeslH'/
101=5 :
1026 )
103=10 ]
sNIsNPAGESINSETS
IF_(ITER oEQel ) STOR
READ(103) (QUTPUT(K)sK=1sITER)
1TER25=1TER/25
KOR=25 '
C CALCULATES MEAN» STANDARD DEVIATIONs AND PREPARES HISTOGRAM
IHOPE=Q
445 I1HOPE=IHOPE+1
< CALCULATE INTERVAL RANGE (RINT) FOR NI INTERVALS
XMIN = OUTPUT(1)
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AMAX = OWTPUT(1}
DO 91 K = 1,ITER
TF{OUTPUTIK] <LT<XMINY XMIN=QUTPUT(K)
TOUTPUT(K) 25T« XMAXT XMAX=OUTPUT(
91  CONTINUE
§ RINT = (XMAX-XMIN)/FLOATINI)
j C CALCULATE MEAN VALUE (XVAL) FOR EACH INTERVAL
i XVAL (1Y =XMIN + RINT/2.
DO 90 N = 2sNI -
. . = - T
| f ¢~ DETERMINE DATA FREQUENCY FOR EACH INYERVAL
DO 20 N =1,NI
20 NFREQIN)I =0
00 92 K = 1,ITER
N = 1,N1
XLTM=XVAL (NI +RINT/ 2.
TF(XLIM«GE<QUTPUT(K)) GO TO 92
21 CONTINUE
N = NI
92 NFREQ(N)I=NFREQ{NI+1
AN VALUE [XMEAN]

BTN

33 SUMX = 0.
DO 30 K = 1,ITER -
30 SUMX=SUMX+GUTPUT(K)
XMEAN = SUMX/FLOAT(TTER)
CALCULATE STANDARD DEVIATIOR (XSDEV]
SUMSG = O
DC 40 K = IL+iTER
40 SUM5Q=SUMSG+(OUTPUTIKI~XMEANT*#¥2
: IF (ITEReNE»1) GO TO 3210
% XSDEV=0.
TG0 70 3200
3210 XVAR = SUMSQ/(FLOAT(ITERI=14)
XSOEV = SGRT (XVAR) :
3200 CONTINUE :

‘_.._-.,.._._,,.m_.,.m_"..‘..,...l._
n

L % e et TR M M L ST SRS R G iR BRI R

PLOTTING ROUTINE

[aYlalla)

DIMENSION LABELX(16)sLABELY (10)sLINE(132)
LABELX(16)%999999

DETERMINES WIDTH OF PLOTTING INTERVAL

INTWID=30/NI
IF(INTWID,EQeO) INTWID=1

Pt Sl 1 T S T
[allallal

‘al

C DESIGNS X AX1IS SCALE i i

XRANGE=XMAX~-XMIN

IFACTR=0

“X INCR=XRANGE/10.

: TF(XINCRsLTele; GO TO 498 s

4 400 TF(XINCR+GE+s1e+AND+XINCRSLE«10s) GO TO 410
XINCRaXINCR/10.

T IFACTR=IFACTR+1

i GO 70 400

T %10 INCR¥%=XINCR
TF(INCRX<EQ.31 INCRX=2

T IF({INCRYX«GTe3eAND . INCRXeLEs 77 INCRX®5
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PRI

f——IELINCRXaFQaBeORa INCRX4EQa9) INCRX210
! IF(IFACTR,EQ.0) GO TO 420
DO 420 1=]1,1FACTR
: INCRX=10#INCRX
{ " 420 CONTINUE
' TFACTR=0 g

_ SCALOW=XMIN o o o
T35 1F(ABS(SCALOWI<GELOe WANDe ABSISCALOWIeLE«1G+1 GO TO 430
L SCALOW=SCALOW/10.
! TFACTR=IFACTR+1
i GO TO 425

{430 LOSCAL=SCALOW

5 IF{IFACTR.EQ.0) GO TO 440
: DO 440 I=1,IFACTR,

NEMIN = wrmm i ermmie e

S—

ks

LOSCAL=10%LOSCAL ;

440 CONTINUE 3
T 431 IF(FLOAT(LOSCAL+INCRX] .GEs XMIN) GO TO 432
i . LOSCAL=LOSCAL+INCRX

GO T0 431
""432 CONTINUE
L LABELX(1)=LOSCAL+INCRX

DO 450 1=2,15
I 450 LABELX(T)=LABELX([=1)+INCRX

TR IV ST MRV S S R bt <

—
L

: iC o T _ T
i fgﬂf _ LABELX NOW CONTAINS 15 INCREMENTAL VALUES TO BE USED !
C __FOR SCALE MARKINGS ALONRG THE X AXIS [
C
C DESIGN Y AXIS SCALE
C
MAXY=(ITER#5) /NI
1 . INCRY=MAXY/10
LABELY(1)=INCRY
DO 460 1=2,10
: 460 LABELY(I}=LABELY(I~1)+INCRY ;
: C
! < LABELY NOW CONTAINS 10 INCREMENTAL VALUES TO BE USED
! < FOR SCALE MARKINGS ALONG THE Y AXIS T
; K ,_ _
; < .
i C PRINT Y SCALE
: C

WRITE (102+%02) (LABELY(1)s1=1510) . .
DO 4569 1=16+116510
469 LINE(I)=DOT
DO 48] 1=1,15
481 LINE (])=BLANK '
DO 482 I=17+115,2
' 482 L INE(])=BLANK
A | DO 483 I1STAR¥=18,108+10 3
' 1ST0P=1START+6
DO 483 I=I1START,ISTQP,2
483 LINE(])=APOS
WRITE(]02,403)(LINE(1)s[=14116)
WRITE(]O02,604)XMIN

N SRR P A S N R WP T

C
C BEGIN PLOTTING DATA POINTS AND LABELING X AXIS '
[
i DX = XRANGE/ (fLOAT(INTwID)*FLOAT(NI))
! DY = FLOAT(MAXY)/100.
XVALU=XMIN
LAB=]
@A 48

T A st £y o " L R .
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D0 499 K=1,N1
DO 499 Js)»INTWID
YVALU=0.
I=1
477 IF (FLOAT(NFREQ(K))eLE<YVALU) GO TO 475
LINE(1)=BLANK

[=]+1
YVALU=YVALU+DY
GO T0 &417
T8 LINETTT=X
) XVAL U= XVAL U+DX
C
[ PRINT X VALUE IF APPLJCABLE
C
TE(FLOAT(LABELXTLAB)) «GV. XVALU) GO TO 470
T
“C T PRINT XMEAN IF T OCCURS IN THIS TNTERVAL
e
- TIF{XMEAN.LT+«XVALU «OR. XMEAN.GE. (XVALU+DX)) GO 10 471
GO 10 4712
470 1F (XMEANJ.LT.XVALU <OR. XMEANLGE«(XVALU¥DX)) GO TO 473
GO 10 474
471 WRITE(102,405)LABELX(LABY s (LINE(IT)sI1=1,51)
CAB=LAB+1
; GO TO 499
. 472 WRITE(IOZ+406)LABELX(LAB) sXMEAR» (LINE(TT1) s 1I=12,1)
LAB=LAB+1
GO T0 499 ”
473 WRITE(IOZ,407) (LINE(TT)»11=1,41)
GO TO 499
474 WRITE(T02,408 ) XMEAN (LINE(TI)»11=1241)
499 CONTINUE
WRITE(102,411 1 XMAX
1 WRITE(T02,412)XSDEV

412 FORMAT (//73s9H STD DEV=+F1043)
GO _TO 99
498 WRITE(102,409)
99 CONTINUE
1F(IHOPE.NEos1) CALL EXIT
CALL POLYFT (XVALsNFREQsNI sKORy»SMOOTH)
D0 505 1=]4NI
505 NFREQ(I)=SMOOTHI(I) + 500
GO TO 445
{402 FORMAT(1H1+12Xs4H 000,10(6Xs14))
" 403 FORMAT(116A1/)
T 404 FORMAT(SHXMIN =3F10e3//)
i 405 FORMAT(16,9X5100A1)
[ 406 FORMAT(I16,3XsTHXMEAN =,F10¢3,88A1)
« 407 FORMAT(15X,100A1)
| 408 FORMAT(9X,7HXMEAN =»F10.3s88A1)
T 409 FORMAT (79HOERROR MESSAGE ~-- RANGE OF TOTAL COST ESTIMATES IS LES
’ #S THAM TENe PLOT DELETED )
7411 FORMAT(6HXMAX =,F10e3)
{ END
STBFTC FTKURV
SUBROUTINE POLYFT (XVAL yNFREQ sNT yKOR » SMOOTH)
101=%
102=6
103=10
C POLY0010

49 ' @A
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AT VPR

DRI R RGO SRR T FT L - e o e o R R S R S R R T

TR T VAR A e 2 T e e el o

c _DIMENSION Egg ARGUMENTS P0LY0020
e DIMENSION XVAL(100) +NFREQ(100)+A(625)2C(25)+SMOOTH(100)

_ POLY0040
[ DIMENSION FOR SELF-GENERATED VALUES POLY0050
"'_TST'E'M NSION SUMX({100)sSMYX! 501 AMEANK{ 501 POLY0060
PYS=FLOAT(NI)
| KTOR= 2#KOR POLY0090
Le POLY0100
C TRITIALIZATION POLYO110
DO 1 1=14KOR POLYO120
SMYX(T1)= 0.0 POLYOL30
1L AMEANX(1 )= 0.0 POLYO140
00 2 1Iw1,KTOR POLY0150
: 2 SUMK(I)I= 0.0 POLY0160
- ‘ SUMY= 0e0 POLYN1 7O
' C . POLY0180
C NORMALIZATION WITH RESPECT TO XMAX POLY0190
XVAL1=XVAL{1)
DO 707 NOJ=1,sNI
707 XVAL (NOJ T =XVAL (NOJ)-XVAL1
XMAX=XVAL(NT)
D0 102 I=1eNI
102 _XVAL{IY=XVAL{ 1) 7XMAX
C “POLY0270
C POLY0280
C FORMULATION OF NORMAL EQUATIONS POLY0250
DO 3 J=1,KTOR POLY0300
00 3 I=1,NI
i 3 SUMX{J)=SUMX (JI*XVALIT)* %]
' DO & 1=1,NI
4 SUMY=SUMY+FLOAT (NFREQ(1))
AMEANY® SUMY/PTS POLYG350
! DO 6 J=1,KOR POLY0360
L AMEANX( J)=_SUMX (J)/PTS POLYO3T0
DO 6 I=1,NI ¢
6_SMYX(J)=SMYX (J)+FLOAT (NFREQ( i) ) ¥XVAL(T)aag {
00 8 I=1i,KOR POLY0400 2
CUI)= SMYX{1) ~PTS#AMEANX(])*AMEANY POLYO410 5
DG 8 J=1,KOR A POLY0420 f
Kx 1+ POLY0430 i
1J =(J=~11%#KOR +1] ' POLY0440 3
“ 8 A({IJ) sSUMX(K) —PTS* AMEANX(1)*AMEANX{J) ' POLY0450 H
< _ POLY0460 3
4 CROUT'S REDUCTION METHRD POLY04TO §
. DO 11 I=2,KOR POLYOWBO
; =(]=1)% + 1 POLY0490 §
11 AUI11) = ACRl1Y/ ACL) POLY Q500 i
DO_ 12 J=2,KOR POLYO510 H
KM= _J-1 POLY0520 H
DO 14 1=J),KOR POLY0530 H
AP1= 0,0 POLYQS40 2
D014 K=]1 KM POLYQNS50 H
. JK m(K-}1)#% KOR+ | POLY0560 g
KJ »(J=1)% KOR+ K POLYD570 .
___11&"A21___591 + ALIK) *A(KJ) POLYDS580 '
, 1J ={J-1}% KOR+ ] POLYO0590
| 14 A(IJ) = A(1J) -AP] POLYQ600
N e — S— — —_—————— POLYQ6l0
@ 20
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3. - F_(JpP=- 4649 B4%e 4465 . POLYO.éZﬁ_{
r 4464 DO 16 [=JPs+KOR POLYD6 30
» [+ AP1= 0.0 I POLY 0640
00116 K=1,KM POLYD650
- JK = (K=1)% KOR + J POLY0660
; KI =({~1)% KOR + K POLYD670
¢ 116 AP] =AP1 +A{JK) *A(KI) POLY0680
: JT a(]=i1% KOR + J POLY0690 |
JJ =(J=1)% KOR + J POLYOT00
16 A(JI) = (A(JIT =AP1Y/A(JIN) POLYO710
445 DUMMYe= 040 POLY0720
12 CONTINUE POLYOT30
CTIT =C{IY 7A(IY
DO 18 1=2,KOR POLYOT50
g AP1= 0.0 POLYG760
. TM=1-1 POLYOTTO
00 118 K=1»1M POLY0T780
¢ IK =(K-1)% KOR + 1 POLYOT790
{ 118 _AP1=AP1 +A(IK) *C(K) POLY0800
: T =iI=1)% KOR + 1 60LY0810
18 C{1) =(C(11~ APL) / A(II) f ‘LYo820
KORM= KOR-1 PULLY0830
1F (KORM) 122y 1235122 POLY0840
122 00 21 T=1yKORM POLY0850
API= 0.0 POLYOHE0
M= KOR-1 POLYOBTO
] MP= M+1 POLY0B80
¥ D0 121 K=MP+KOR POLY0890
i MK =(K=1)% KOR +M POLYQJ00 :
; 121 AP1 =AP1 + A(MK)* C(K) POLY0910 !
{ 21 C(M) =C(M) -AP1 POLYOY20 -
: 123 AP1= 0.0 POLY0930 s
DO 24 1=1+KOR POLY0940 :
24 AP1 =AP1 +AMEANX(I) *C(I) POLY0950 ;
CO__= AMEANY -AP1 POLY0960
C POLY0970
778 SRES = 0.0 POLY1030
WRITE(102,25)
4 25 FORMAT (60H1 COST FREQ SMOGTHED
; * RES/43H INTERVAL FREQ)
i DO 77 I=1,NI
14 SMOOTH(1)1=C0O
4 DO 27 J=1,KOR ] POLY1090
27 SMOOTH(T)=SMOOTH(I)+C(JI*XVAL(T) *xJ -
RES=FLOAT(NFREQ(I))=-SMOOTHI(I) .
r C POLY1130 .
! C DENORMALIZATION WITH RESPECT TO XMAX POLY1140
XVAL (1) =XVAL ( 1 J*XMAX
XVAL(T)=XVAL (1) +XVALL
30 FORMAT( 4F1544) POLY11860
FREQ=FLOAT(NFREQ(T1))
77 _WRITE(102,30)XVAL(1)sFREQySMOOTH(1) sRES
RETURN POLY1270
END POLY1280
SENTRY HSTPLT
$1BSYS
$CLOSE S.5U10




BETA PROGRAM LISTING

$J0B . 0094303 5 JOHNSON s WW s MAIN X7131
EWIND

S0
$18J0B MCCOST NODECK
SIBFYC BETATP NODECK
DIMENSION QUTPUT(1000) _
COMMON/NONAME /NTABLE +NSETSs IRANDM XTABLE (12B8)sFDATA(100) »
* FMODE(100) s FRANGE (100) sNTYPE(100}+ITERWNI»CUMI{94128)
EXTERNAL SFX
1TER=1000

r N1=100 T :
\ NPAGES=2 !
101=5 , — 3

%"

102=6
103=10
READ(T101+102) NSETS s IRANDM
. 102 FORMAT (Ths &)
Q , DO 708 I=1sNSETS i
READ (1015103) FLOWSFHIGHsFMODE(T1sNTYPE(TL) i
FRANGE ({1 ) =FHIGH-F LOW
TF(FRANGE(T)+LT20s) GO TO 9961
709 IF(NTYPE(1)+GE<Ll+ANDsNTYPE(1}sLE9) GO TO 707
WRITE (1025101) 1
1TER=1 :
707 IF (FMODE{T1) eLE+FHIGHoAND,FMODE(T).GE« FLOW) GO TO 708 !
WRITE (1024104) 1
1TER=1
708 CONTINUE
i IF_(ITER .EQ. 1 ) GO 10 9960
< GENERATES CUMULATIVE BETA TABLES FOR NINE BETA EQUATIONS
DO 7O M = 1+9
J=o ,
NTABLE = M {
1 : DELTAs 0.,0078125
A= 000
6B=DELTA
D0 70 J = 1,128
GALL EVLINT(SFX1AsBByFF)
CUM(My J) =FF
.. .XTABLE(J)=B8B
BB=BB+DELTA - H
) 70 CONTINUE
1H]ST=}
{9908 CALL SAMPLE

e

< . :
< SAMPLE _RETURNS NSETS VALUES OF FDATA FOR USE AS INPUT TO THE COST MODEL
[
C

THE COST MODEL IS INSERTED HERE
QUTPUT(IHIST)=FDATA(1}+FDATA(2)+FDATA(3)+FDATA(4I+FDATA(S)+

£ #FDATA(6)+FOATALT)
C X B R K R X E ¥ E E R R R OE R K A N K N A KW
Ec SR 2N SN SR SEE TR SEE R SN NN TS SR SR NUT SR 2. JEE SR 2R SN NS JNE N
(o

IHIST = IHIST+1
GO_TO 9908
9960 CONT INUE
WRITE (10%) ITERsN]NPAGES,NSETS
— WRITE_(103) (OUTPUT(K1sK=1s1TER)
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BA P

BACKSPACE 10

CALL EXIT

996 WRITE (102,100} 1

I1TER=1
GO TO 709

50 FORMAT(I3,1X,15]

51 FORMAT(2(F10e3+1X)s11)
101 FORMAT (46H DATA ERROR —-- DISTRIBUTION TYPE FOR DATA SETsl4slXe24

*H1s ZERO OR NOT SPECIFIED)
103 FORMAT (32Xs+3E10.2+11) ’

100 FORMAT{55H DATA ERROR == LOW GREATER THAN HIGH TN DATA 5ET WUMBER:
¥13) :
104 FORMAT(56H DATA ERROR -~ MODE NOT BETWEEEﬁH]GH AND LOW IN DATA SET
*y14)
END

$I1BFTC 55555X “* T

FUNCTION GFX(X] — B
COMMON/NONAME /NTABLE sNSETSs IRANDM s XTABLE (128) +FDATAT100] »

* FMODE(100) sFRANGE(100) sNTYPE(100) ¢ ITERsNI»CUM(94+128)

C

K< THIS SUBROUTINE--USED BY PKLEG-~ DEFINES BETA EQUATION PARAMETERS
C

— DIMENSION CONSTE (3,9)

DATA CONSTE /1050-575.101-35’10350100§§3:5310595-1'3-0¢100v200092
¥ 0 7592075095¢511009300920e03%05+10597265+44¢09400+63009145142597205
* /
T SFX=CONSTB (3 +NTABLE ) ¥ { X#¥CONSTB(IsNTABLE) 1 #{(T1.0-X )1 *#¥CONSTB(2sNT
* ABLE))
RETURN
END
$1BFTC SAMPLE
SUBROUTINE SAMPLE —
C i
. C GENERATES A MONTE CARLO VALUE FOR EACH INPUT PARAMETER
C

B COMMON/NONAME /NTABLE yNSETS» IRANDM, XTABLE(128) +FDATATI00) ¢
* FMODE(100)sFRANGE (100) sNTYPE(100) s ITERINI»CUM{9,128})
DATA JK/100043/
DATA THOU/1000004/
REAL MODTYP
DIMENSION MODTYP(9) o §
DATA MODTYP/e7596509025350759¢5096259e759¢509425/

DO 99 N=1,NSETS o
IF(NTYPE(N) «LTeloOReNTYPE(N)«GT+9)G0 TO 151
I=NTYPE (N)

SMODE=MODTYP (1)
M=NTYPE (N) o

GO 70 10

SINGLE VALUED INPUT T

51 FDATA(N)=FMODE(N)

GO0 TO 99

10 L=IRANDM

3 L=78125%L
L=L~(L/JK)*JK
TF{L=~100000)4+4+3

4 XL=FLOAT(L)/THOU

5 |RANDM=L
J = 64
DO 13 K=1y7
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1F(KaEQa2) GO YO 14

L = 6 - K

IF(CUM(MsJ) oL TeXLIGO YO 11

IF(CUM(MyJ) oGTeXL) GO TO 12

GO _TO 14

11

J o= J o+ 2%RL

60 10 13

12

J o= J = 28|

13

CONT INUE

14

SAMPLX = XTABLE(J)

FOATA(N) =FMODE (N)+FRANGE (N) * (SAMPLX=SMODE)

99

CONTINUE

100

RETURN

END

$IBFTC INTEGR

SUBROUTINE EVLINT(Fy As By Y )

DIMENSION SUB(1D)s WGT(S)

DATA SUB/ ¢130467360E-19674683170E~1»

A ¢1602952169 283302303y 2425562831y, ¢986953264»

B «932531683,

4839704784y « 7116697697,

574437169/

DATA WGT/4333356722E-1y «747256746E~1,

A 4109543181

»134633359 147762112/

DX=B-A

Yx0e0

DO 100 I=1,5

X1=SUB(1 )Y*DX+A

X2=SUB(I1+5) ¥DX+A

100 Y=Y+WGT(I)#(F(X1)+F(X2})
Y=Y#DX
RETURN
END
SENTRY BETATP
7664325 ]
+1e00E4+04 +1.60E+D4 +1420E+046
+1e90E+04 +2.8B0E4+04 +2.10C+043
+1e20E+04 +3400E+04 +1.80E+043
- +1.00E+04 +1,40E+04 +1.10E+046
$1BSYS .

$1BJ0OB "COMPLT NODECK

$IBFYC HSTPLT NODECK

<

EXTRACT OF HISTO

101=5

10256 A

103=190

DIMENSION NFREQ(100)»XVAL(100)»SMOOTH(100),0UTPUT(1000)

INTEGER BLANKsX»DOT»APQS

DATA BLANKsX9DOT9APOS/1H +1HX91Hey1H'/

READ (103) ITERsNIsNPAGESINSETS

IF (ITER ,EQel ) STOP

READ(JO3) (OUTPUT(K)sK=1»I1TER}

ITER25=ITER/25

KOR=2%5

CALCULATES MEANs STANDARD OEVIATIONs AND_PREPARLS HISTOGRAM

[HOPE=0

44% JHOPE=1HOPE+]

< CALCULATE INTERVAL RANGE (RINT) FOR NI INTERVALS

XMIN = QUTPUT(1)

XMAX = QUTPUT(])

PO 91 K = 1+1TER

1F(OUTPUT(K) eLTeXMIN) XMIN=QUTPUT (K}

T1F(OUTPUT(K) e GT e XMAX) XMAX=OUTPUT (K)
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’ 91 CONTINUE
i “ RINT = (XMAX-XMIN}/FLOATINI!
? { C CALCULATE MEAN VALUE (XVAL) FOR EACH INTERVAL

XVAL(1)=XMIN + RINT/2,
: DO 90 N = 2,NI
' - 90 XVAL (N)=XVAL(N~1) + RINT
C DETERMINE DATA FREQUENCY FOR EACH TNTERVAL
1F (THOPE+EQ.2) GO TO 93 i

i R - - —

PO 92 K = THITER
D0 21 N = IsNI
XLIMEXVALTNY+RTINT 72,
T TTFIXLIMGGE.OQUTPUT(K)) GO TO 92
21 CONTINUE
N = NI
92 NFREGIN)=NFREQ(N)+1
C CALCULATE MEAN VALUE (XMEAN]}
93 SUMX = Q.
DO 30 K = 1sITER
30 SUMX=SUMX+0UTPUT (K)
XMEAN = SUPX/FLOAYUITER]
C CACCULATE STANDARD DEVIATION (XSDEV)
SUMSQ = O,
D0 40 K = 1.ITER
40 SUMSQ=SUMSQ+(OUTPUT(K)-XMEAN] #%2
IF (ITEReNE.1) GO 7O 3210
XSDEV=0+
L GO 70 3200
3210 XVAR = SUMSQ/(FLOAT(ITER)=1,)
XSDEV = SQRT(XVAR)
3200 CONTINUE

2 PLOTTING ROUTINE
5 DIMENSTON LABELX(15)sLABELY(101sLINE(132)
_E_ DETERMINES WIDTH OF PLOTTING INTERVAL —
= INTWID=50/N1
— IF(INTWIDJEQaO) INTWID=1 4_

< DESIGNS X AXIS SCALE
C

XRANGE=XMAX=XMIN
* IFACTR=0

XINCR=XRANGE /10
1F(XINCReLTsle) GO TO 498 -

400 IF(XINCRsGE«lesANDSXINCReLE«10s) GO 7O 410
XINCR=XINCR/10.,
TFACTR=IFACTR+1
GO Y0 400

410 TNCRX=XINCR -
TF(INCRX+EQes3] INCRX=Z
TF(TNCRX<GT+3¢AND« INCRX.LE< T INCRX%5
1F (INCRX+EQ.8+0R. INCRX<ED.91 INCRX=10

T IF(IFACTR.EQ.0) GO TO %20 -
DO 420 I=1,IFACTR
INCRX=10¥ INCRX
420 CONTINUE
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=0,

SCALOW=XMIN

425 IF(ABS(STALOW) «GE+Os #ANDs ABS(SCALOW)sLE«10s) GO _TO 430
SCALOW=SCALOW/10.
TFACTR=IFACTR+1
GO TO 425

430 LOSCAL=SCALOW
TF(IFACTR.EQ.0) GO _TO 440
DO 440 I=1,IFACTR -
LLOSCAL=10%LOSCAL

440 CONTINUE

431 TF(FLOAT(LOSCAL¥INCRX] -GE« XMIN] GO TO %32
LOSCAL=LOSCAL+INCRX
GO T0 431

432 CONTINUE
LABELX (1) =LOSCAL+INCRX
DO 450 1=3+15

450 LABELX(1)=LABELX(I=1)+INCRX

~ LABELX NOW CONTATNS 15 INCREMENTAL VALUES YO BE USED
~ FOR SCALE MARKINGS ALONG THE X AXIS

DESIGN Y AXIS SCALE

PRPS PAPRPNN:

___ MAXY=(ITER*S) /NI
INCRY=MAXY /10"
. LABELY(1)=INCRY

DO 460 [=2,10
460 LABELY(I)=LABELY{I~1)+INCRY

LABELY NOW CONTAINS 10 INCREMENTAL VALUES TO BE USED
FOR _SCALE MARKINGS ALONG THE Y AXIS

PRINT Y SCALE

nnnnlnnn‘

|
i

WRITE (1029402) (LABELY(1)s1=1+10)
_____________ DO 469 1=16+116210

469 LINE(1)=00T
DO 481 I=1s15

481 LINE(])=BLANK
DO 482 1217411552

482 LINE(])=BLANK

DO 4B3 ISTART=18,108,10
_1STOP=ISTART+6

DO 483 1=]START+1570P+2
__._483 LINE(I)=APOS

L _WRITE(102+403) (LINE(1)»1=19116)  __
WRITE(IO2.404)XMIN

S
- C BEGIN PLOTTING DATA POINTS AND LABELING X AXIS
C

DX = XRANGE/ (FLOAT(IMTWID)#FLOAT(NI})
DY = FLOAT(MAXY)/100,

XVALUsXMIN

LAB=]

DO 499 K=14NI

DO 499 J=1sINTWID

YVALU=O.
=1
477 IF (FLOAT(NFREQ(K))eLELYVALU) GO TO 475"
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LINE(1)=8L ANK

151+1 ST

YVALU=YVALU%DY

GO TO 477

475 LINE(T)=X

XVALU=XVALU+DX

PRINT x VALUE TF APPLICABLE

C
£
c
<
C

~ TF{FLOAT (LABELXTLAB)) +GT« XVALU) GO TO 470

PRINT XMEAN IF 1T OCCURS IN THIS TNTERVAL

" TF(XMEANSLT«XVALU +ORs XMEAN<GE« (XVALU+DX7) GO TO 471

GO _TO 472

470 TIF (XMEANJLT«XVALU «+OR% XMEANGts(XVALU+DX)) GO TO 473

saiibid

GO TO 474

471 WRITE(102,405)LABELX(LABI» (LINE(IT) s 1T=1,41)

LAB=LAB+1

T 472 WRITE(TO02,406) LABELX(LAB) sXMEANS (LINE(TT Y s ITa12,17

GO TO 499

LAB=LAB+1

GO TO 499

" 473 WRITE (102,407) (LINE{TT)211=141)

GO TO 499

474 WRITE(102,4081XMEAN (LINE(TT),11=12,1)

499 CONTINUE

WRITE(T024+411)XMAX

WRITE(102+412)XSDEV

412 FORMAT (/7/7s9H STD DEV=+F1043)

GO 10 99

T 498 WRITE(102,409) B

99 CONTINUE “’

TF({THOPESNEL1) CALL EXIT

CALL POLYFT (XVALsNFREQGsNI » KOR»SMOOTH)

DO 505 I=1sN1

505 NFREQ(I)=SMOOTH(I) + <500 B

GO TO 445 o

402 FORMAT(IH1s12Xs6H O00+10(6Xs141) -

403 FORMAT(116Al1/)

404 FORMAT(6HXMIN =9F1043//)

405 FORMATII16+9Xs100A1)

406 FORMAT(I6,3X+7THXMEAN =4F104+3+88A1) _

407 FORMAT(15X»100A1) - T

408 FORMAT(9X, THXMEAN =+F10+3988A1) e

409 FORMAT (79HOERROR MESSAGE —-- RANGE OF TOTAL COST ESTIMATES IS LES

*#S THAN TEN. PLO' DELETED )

411 FORMAT(S5HXMAX =sF10.3)

END -

"$1BFTC FTKURV

SUBROUTINE POLYFT(XVAL 4NFREQ,NI,KORySMOOTH)

AN et (B B e e o

101=5 Y
102=6 .
103=10 -
C ] POLY0010
C DIMENSTON FOR ARGUMENTS - - POLY0020Q
DIMENSTON XVAL {1001 sNFREQ{100)sA{6251+C(25)sSMOOTHI100)
[ POLY0040
[4 DIMENSION FOR SELF-GENERATED VALUES POLY0050
DIMENSION SUMX(1001»SMYX( 501 AMEANX( 50) POLY0060Q
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[ 1 T 1

—  PYS=FLOAT(NI}
KTOR= 2#KOR . POLY0090
(4 ) o POLY0100
c INITIALIZATION POLYO130
_ DO 1 I=1,KOR POLY0120
SMYX(I)* 0.0 POLY0130
1 AMEANX{T)= 0.0 - T - T __POLYol4o
DO 2 I=1,KTOR o __POLYO150
2 SUMX(T)1= 0.0 POLY0160
SUMY= 0.0 POLY0170
[ POLYGIB0
c NORMALIZATION WITH RESPECT TO XMAX POLY0190
XVAL1=XVAL{1) _
DO 707 NOJ=1,NI1 T
707 XVAL(NOJ)=XVAL (NOJ)-XVALI ] _
XMAX=XVAL (NT)
DO 1062 T=1,N1 B
102 XVAL{1)=XVAL(T)/XMAX
(Y - POLY0270
< - ' - POLY0280
"C T FORMULATION_OF NORMAL EQUATTONS - POLY0290
00 3 J=1,KTOR ) POLY0300
— DO 3 TwisNI _ -
3 SUMX(J)=SUMX (J) +XVAL (1)1 #*J
DO & I=1.Nl ' _
4 SUMY=SUMY+FLOAT(NFREQ(T))
AMEANY= SUMY/PTS POLY0350
DO 6 J=1,KOR POLY0360
—_AMEANX(J)= SUMX (J)/PTS POLY0370
_____DO 6 1=1NI e
6 SMYX(J)=SMYX(J1+FLOAT (NFREQUI) ) RXVAL{T) #%J
T b0 B 1=1,KOR POLY0400
C(I)1= SMYX(1) -PTS*AMEANX(T)*AMEANY 7 POLY0410
DO_ 8 J=1,KOR POLY0420
K= 1+J POLYD430
77777 1J ={J=1)%KOR +1 POLY0440
T 8 A(IJ) =SUMX{K) ~PTS* AMEANX(I)*AMEANX{J) _ POLY0450
C d POLY0460
€ ____CROUT'S REDUCTION METHOD POLY0470
DO 1) I=2,KOR POL.Y0480
111=(1~1)#KOR + 1 POLY0490
11 A(I11) = ACILI)/ A(D) POLY0500
DO 12 J=2,KOR POLY0510
KMe_ J-1 e POLY(0520
DO 14 1%.J,KOR . POLY0530
AP1= 0,0 POLY Q540
DO11& K=1,KM o POLY0550
Ak =(K=11% KOR+ I L o POLY0560
_ KJ =s(J=1)% KOR+ K L . POLY0570
114 AP] = AP] + A(IK) *A(KJ) __ e POLY0580
e 1J a(J-1)% KOR+ 1 o POLY0590
14 Al1J) = A(1J) ~AP]l POLYD600
‘ JP= J4+1 POLY0610
y IF_(JP= KOR) 444y 4h4y 445 POLY0620
L4464 DO 16 1=JPsKOR POLY0630
L APl= 0,0 POLY 0649,
DO116 X=1,KM POLY0650
r JK s({K-1)#% KOR + J LY
f KI_=(]-1)% KOR + K POLY0670
116 AP]1 =AP]1 +A{JK) *A(KI) - POLY0680
. " J1 s(l-1)% KOR + J POLY0D690
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JJ =(J=11% KOR + J POLYOT700
16 A(JI) = (A(JI) —-AP1)/A(JJ) . POLY(QT10
455 D tMYx 040 POLY0720
12 CONTINUE POLYOT730
T =)y /At POLY0T740
DO 18 I=2,KOR 44 POLYD750
- AP1= 0.0 POLYOD760
N TM=T-1 S POLYDTT0
B DO 118 K=xisIM B POLYODT80
TK ={K=-1)* KOR + 1 POLYD T30
118 AP1=AP1 +A(IK) #C(K) POLYDB00
I s(1-10% KOR ¥ | POLYO810
~ 18 CU1Y =(Ci)y- APT) /7 ATID) o POLY0820
" KORM= XOR-1 - POLY0830
1F (KORM) 122s 123,122 N POLYG840
12200 721 I=1,KORM POLY0850
. ____AP1= 0.0 POLY0860
M= KOR~I POLY0870
MP= M+1 POLY08%0
DO 121 KEMP4KOR T POLY0890
MK #(K-17¥% KOR +M T “POLY0900
121 APL sAPI + ATMKI¥ C(K) POLYOI IO
T CTMY =C(MY -APL POLY0920
"1237API=70.0 - - POLY0930
) DO 24~ T=1,KOR POLY0940
24 APT =AP1 +AMEANX{T) #{(1) PCLYD950
CO = AMEANY -AP1 POLY0960
C POLCYOITO.
- 778 SRES = 040 POLY10%0
WRITE(102,29)
29 FORMAT (60H1 CosT - FREQ SMOOTHED
* RES/43H TNTERVAL FREQ)
DO 77 I=1,NI
SMOOTH(1)=CO
DO 27 J=1.KOR POLY1090
27 SMOOTH(T)=SMOOTH{T)+C{J) *¥XVAL (1) *#*
RES=FLOAT(NFREQ(T))=SMOOTH(1) .
C e POLY1130
C DENORMALIZATION WITH RESPECT TO XMAX POLY1140
XVAL /1) =XVAL (1) %*XMAX
XVAL(T)=XVAL (1) +XVAL]
30 FORMAT( 4F15.4) B POLY1160
______ FREQ=FLOAT(NFREQ(I}) o
77 WRITE(102,30)XVAL (1) +FREQsSMOOTH(1)+RES
RETURN POLY1270
_ END POLY1280
SENTRY HSTPLTY
3CLOSE $25U10
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19 ACT
hane Afn important aspect of cost research is the measurement of the uncertainty
inherent in the projection of system cost. Approaches to this problem have in the
past centered on the decision maker’s intuition or in sensitivity analysis. Only re-
cently have approaches utilizing such tools as statistical decision theory and prob-
ahility theory been formulated. '

This study focuses on the Monte Carlo simulation approach to uncertainty in
cost analysis. This approach requires:

(a) Expression of input estimates as probability distributions reflecting un-
certainty.

(b) Cost equations pertinent to a particular model.
The Monte Carlo simulation approach then generates:

(a) The frequency distribution for system cost.

(b) Statistical measures that illustrate the nature and magnitude of system
cost uncertainty,

Two models are developed, the Beta model and the Weibull model, cach of
which reflects a Farticular distribution form for the inputs. The relative costs
and advantages of each model are compared,

A user’s guide to the program and complete program listings are presented
in an appeundix.{ /
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